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Abstract—Power Delivery Network (PDN) is one of the most
challenging topics in modern VLSI design. Due to aggressive
technology node scaling, resistance of back-end-of-line (BEOL)
layers increases dramatically in sub-10nm VLSI, causing high
supply voltage (IR) drop. To solve this problem, pre-placed or post-
placed power staples are inserted in pin-access layers to connect
adjacent power rails and reduce PDN resistance, at the cost
of reduced routing flexibility, or reduced power staple insertion
opportunity. In this work, we propose dynamic programming-
based single-row and double-row detailed placement optimizations
to maximize the power staple insertion in a post-placement flow.
We further propose metaheuristics to improve the quality of result.
Compared to the traditional post-placement flow, we achieve up
to 13.2% (10mV ) reduction in IR drop, with almost no WNS
degradation.

I. INTRODUCTION

Distribution of power (VDD) and ground (VSS) through
the Power Delivery Network (PDN) is extremely challenging
in modern VLSI design. Back-end-of-line (BEOL) resistance
increases dramatically in sub-10nm VLSI [1] [10]; this in-
creases delay and requires additional buffers to meet timing
requirements. The resulting routing increases capacitive loads
and power consumption, which causes greater supply voltage
(IR) drop, and requires a denser PDN layout – which causes
more congestion again. In sub-10nm technologies, due to this
vicious cycle, adding power mesh is not always the best
mitigation of IR drop.

Insertion of power staples. Traditional PDN structures have
power mesh on higher metal layers and power rails on one
or two lower metal layers, with stacked vias in between.
Insertion of power staples is a new technique for improving
PDN robustness in sub-10nm technologies. Power staples are
short pieces of metal connecting two or more adjacent (i.e.,
consecutive) VDD or VSS rails, to mitigate the IR drop.
Figure 1 illustrates power staple insertions. In this example,
adjacent M2 rails (VDD-VDD, or VSS-VSS) are connected by
power staples in M1. Since each power staple goes across at
least two cell rows, vertical track availability in the context of
standard cell pins and pre-routes is crucial to achieve sufficient
power staple insertion.

Present-day limitations and our approach. There are two
basic types of power staple insertion flows: pre-placement and
post-placement. A pre-placement flow inserts power staples
at fixed intervals before placement. This strategy can achieve
good IR drop, but creates regular hard placement blockages,
and thus affects the placement flexibility. Alternatively, a post-
placement flow inserts power staples opportunistically after
placement, wherever long empty vertical segments (spanning

Fig. 1. Illustration of power staple insertions.

at least two cell rows) are available. However, this approach
is inherently limited by the placement solution: especially for
high-utilization designs where empty tracks are usually not
aligned between adjacent rows, the post-placement flow will
result in fewer power staples and worse IR drop than the pre-
placement flow.1

In this paper, we present new single-row and double-row
dynamic programming (DP)-based detailed placement opti-
mizations to improve power staple insertion in post-placement
flows. Our contributions are summarized as follows.

• We propose a single-row dynamic programming-based
approach to maximize a given objective function which
comprehends the benefit from placing power staples. The
proposed algorithm preserves the original cell ordering
within each row.

• We propose a double- (multi)-row dynamic programming-
based approach to maximize the objective function. The
multi-row algorithm can more aggressively optimize the
placement while keeping cells in their original rows and
preserving row ordering.

• We propose a heuristic weighting function that balances
the number of power staples for VDD and VSS.

• We perform extensive studies on the sensitivity and scal-
ability of our algorithms, and show up to 13.2% IR drop
reduction compared to a post-placement flow without our
optimization.

1This is not an apples-to-apples comparison: the pre-placement flow inher-
ently opts for PDN robustness over layout density, and cannot achieve very
high utilizations.
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II. PREVIOUS WORK

Power staples and IR drop-aware placement. Power staple
insertion is introduced in several works. [9] proposes a design-
technology co-optimization (DTCO) framework with power
staple insertion to mitigate IR drop. [11] introduces a “jumper”
connection between vertically separated power rails to mitigate
both dynamic IR drop and electromigration. [7] shows cell
architectures using power staples, with both pre- and post-
placement methodologies. Other works address IR drop during
placement, e.g., [5] and [6] use analytic placement. [2] calcu-
lates current and voltage drop based on an admittance matrix,
and proposes a cost function to guide placement perturbation.

Graph- and DP-based placement. Graph- and DP-based
optimizations are widely used in detailed placement targeting
various objectives. [4] proposes a series of methods in or-
dered single-row placement using a shortest-path algorithm to
minimize perturbation or wirelength. [3] describes an optimal
single-row and double-row DP optimization to address the
neighbor diffusion effect. Their multi-row DP supports double-
height cells, with cell relocation, reordering and flipping. [8]
describes an ordered double-row placement with support of
multi-height cells. A heuristic chain move algorithm is used
to further improve the wirelength.

In summary, the works of [3] [4] [8] propose graph or
dynamic programming models targeting various problems in
detailed placement. They also support various cell movements
and cell heights, which are not necessarily needed to optimize
power staple insertion. Our work is distinguished in that (i) we
formulate a single-row and double-row dynamic programming-
based approach to maximize benefit functions that include the
number and length of power staples; (ii) our double-row DP
algorithm makes progress site by site instead of cell by cell
as in [3], which allows precise calculation of power staple
benefits (e.g., empty tracks available across multiple cell rows)
per track; and (iii) we show the benefits of our optimization
according to both #staples as well as IR drop in a post-
placement power staple insertion flow.

III. OUR APPROACH

A. Single-Row Optimization

Single-Row Optimization Problem: Given an initial legalized
single-row placement and benefit table of power staples, perturb
the placement to maximize power staple benefits to upper and
lower rows while preserving the original cell ordering and
placement legality.

For single-row dynamic programming, we place one cell at
a time until all cells have been placed. Table I shows notations
in our formulation. For each cell ck, cell index k is that cell’s
position in the row, from left-to-right. Given a cell set C, the
leftmost cell is c1 and the rightmost is c|C|.

For each cell, xck is the location of cell ck in the original
placement. The displacement range [−xΔ, xΔ] means that we
cannot place a cell more than xΔ sites away from the original
location. Thus, cell ck can only be placed in the interval [xck −
xΔ, xck + xΔ].

We use a 2D array d[i][j] to represent the best-to-now
solution (benefit) when we have placed cell ci at location xi+j.
Thus, we obtain the best solution when we have placed all |C|

Algorithm 1 Single-Row Optimization

1: Initialize for all legal (i, j)
2: d[i][j] ← −∞, d[0][j] ← 0
3: for i = 0 to |C| do
4: for j = −xΔ to xΔ do
5: for all (j′) ∈ getNext(i, j) do
6: i′ = i + 1
7: t ← d[i][j] + getBenefit(xci

+wci
+ j, xc

i′ +wc′
i
+ j′ − 1) -

α · disp(j′)
8: d[i′][j′] ← max(d[i′][j′], t)
9: finalBenefit ← max(d[|C|][j])

10: Return finalBenefit
11: Procedure getNext
12: Input: cell i and displacement j of cell ci
13: Initialize nextList ← ∅
14: for j′ = −xΔ to xΔ do
15: i′ = i + 1
16: if inbound(xc

i′ + j′) and xc
i′ + j′ ≥ xci

+ j + wci
then

17: nextList ← j′
18: Return nextList

cells. The array is of size (|C|+ 1)× (2 ∗ xΔ + 1) where we
initialize all d[0][j] to have an initial benefit of zero. Since cell
ordering is preserved, the best result can be found by simply
finding the most beneficial solution across all d[|C|][j].

Algorithm 1 describes our dynamic programming optimiza-
tion. Lines 1-2 initialize all DP array entries to have a benefit
of negative infinity, except that all d[0][j] are initialized to
have an initial benefit of zero. Lines 3-8 describe the main DP
algorithm. The algorithm places each cell one at a time, until
all cells are placed. From each current placement of i cells with
cell ci at xi + j, we try to place cell ci+1 at all legal sites j′.
Function getNext(i, j) gets results for all legal sites j′ so that
cell ci+1 does not overlap with any previous cells. The benefit
is updated incrementally using the getBenefit function. To
encourage smaller displacement for each cell compared to its
initial placement location, we subtract a displacement cost
with a displacement factor α. d[i′][j′] is updated whenever the
current solution is better in terms of t. Line 9 gets the best
single-row placement solution across all d[|C|][j]. We also store
a pointer for each entry of the DP array so that the algorithm
can trace back from d[i′][j′] to d[i][j], from which d[i′][j′]
gets updated. In procedure getNext of Algorithm 1, Line 13
initializes the legal location for cell ci′ to be an empty list.
Lines 14-17 add each available legal displacement j to the list.

The procedure getBenefit takes the left and right coordi-
nates of cell ci′ and incrementally calculates the new power
staples within this range. Since power staples should be at least
two row heights, a simple benefit table could be as follows: a
power staple length of one row height gets a benefit of zero;
a power staple length between two and ten row heights gets
a benefit of one (i.e., the power staple’s length is extended by
the two row-height stapling increment in the current cell row);
and a power staple length larger than 10 row heights does not
get any benefit (i.e., we do not encourage power staples longer
than 10 row heights). Further discussion of the benefit table is
given in Section IV-C.

B. Double-Row Optimization

We present our problem statement and double-row (ex-
tendible to multi-row) dynamic programming-based detailed
placement.
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TABLE I
NOTATIONS.

Notations Meaning
C Set of cells in a window of the initial placement.

ck kth cell in the left-to-right ordered initial placement.
xk Initial x coordinate of the cell ck . We define x0 = 0 for convenience.
[−xΔ, xΔ] Horizontal displacement range of the cells.
wk Width of the cell ck . We define w0 = 0 for convenience.
[1, xmax] Valid sites for cell placement, starting from 1.
d[i][j] The maximum value of the benefit function of the staples that can

be placed when the cell ci is at coordinate xci
+ j. i ranges from

0 to n and j ranges from −xΔ to xΔ.
Additional notations for multi-row DP

crk The kth cell, in left-to-right order, in row r.

wrk Width of the kth cell in the left-to-right order in row r.
D[i]
[s1i][l1]
[s2i][l2]

The maximum value of the benefit function of the staples that can be
placed from coordinate 1 to coordinate i, knowing that the nearest
cell on the first row is cs1i at coordinate i− l1 and the nearest cell
on the second row is cs2i at coordinate i − l2. Note that sri = 0
means that no cell in row r is placed.

Double-Row Optimization Problem: Given an initial legal-
ized double-row placement and benefit table of power staples,
perturb the placement to maximize power staple benefits to
upper and lower rows without inter-row relocation while pre-
serving the original cell ordering and placement legality.

Unlike our single-row dynamic programming algorithm, our
double-row dynamic programming algorithm makes progress
site by site instead of cell by cell. We use an array
D[i][s1][l1][s2][l2] to represent the solution and benefit up to site
i. Similar to single-row optimization, where d[i][j] represents a
solution with (i− 1) cells placed on the left of xi+ j, and cell
ci placed at xi+ j, here, a valid solution up to site i may have
cells placed on the left of site i, or crossing site i. s1 (resp.
s2) indicates the last placed cell cs1 (resp. cs2 ) in row 1 (resp.
row 2), and l1 (resp. l2) indicates the distance between the left
boundary of cs1 (resp. cs2 ) and site i.

Figure 2 gives an example. The long vertical line indicates
the current site i, and we have placed one cell in row 1, and
two cells in row 2. From the figure, the left boundary of the
last placed cell in row 1 has a distance of four to site i, and the
left boundary of the second placed cell in row 2 has a distance
of two to site i. Thus, such a solution is represented by DP
array entry D[i][1][4][2][2].

To progress from D[i][s1][l1][s2][l2] to D[i+1], we must: (i)
choose whether to place new cells in the two rows, and thus
increase l1 and/or l2; and (ii) update the benefit incrementally
by adding the new power staples at site i + 1 and subtracting
any displacement cost of the new cells. Note that since we go
over all sites, assuming we make progress from site i to i+1,
we can limit the new cell placement (with its left boundary) to
be exactly at site i + 1 without sacrificing the solution space.
A new cell placement at sites other than i+1, e.g., i′+1, will
be handled when we make progress from i′ to i′ + 1.

Algorithm 2 describes our double-row optimization. Lines
1-3 initialize the DP array entry to have a negative infinity
benefit, except that all D[0] entries have an initial benefit of
zero. For the current DP entry D[i][s1][l1][s2][l2] in Line 5,
Lines 6-8 update the corresponding DP entry at site i′ = i+ 1
for all legal (i′, s′1, l

′
1, s

′
2, l

′
2). The displacement function checks

whether there are newly placed cells, and will only count the
displacement for the newly placed cells. Then the final solution
is obtained by finding the most beneficial solution when we go

Algorithm 2 Double-Row Optimization

1: Initialize for all (i, s1, l1, s2, l2)
2: D[i][s1][l1][s2][l2] ← −∞
3: D[0][s1][l1][s2][l2] ← 0
4: for i = 0 to xmax do
5: for all (s1, l1, s2, l2) do
6: for all (i′, s′1, l

′
1, s

′
2, l

′
2) ∈ getNext(i, s1, l1, s2, l2) do

7: t ← D[i][s1][l1][s2][l2] + getBenefit(i′, s′1, l
′
1, s

′
2, l

′
2) − α ·

disp(s1, s
′
1, l

′
1, s2, s

′
2, l

′
2)

8: D[i′][s′1][l
′
1][s

′
2][l

′
2] ← (max(D[i′][s′1][l

′
1][s

′
2][l

′
2], t)

9: finalBenefit ← max(d[xmax][|c1|][l1][|c2|][l2])
10: Return finalBenefit
11: Procedure getNext
12: Input: i, s1, l1, s2, l2
13: Initialize nextList ← ∅
14: i′ ← i + 1
15: Only place a cell on the first row
16: s′1 ← s1 + 1, l′1 ← 0, s′2 ← s2, l′2 ← l2 + 1
17: if legalP lace(s1, l1, s

′
1) then

18: nextList.add ← (i′, s′1, l
′
1, s

′
2, l

′
2)

19: Only place a cell on the second row
20: s′1 ← s1, l′1 ← l1 + 1, s′2 ← s2 + 1, l′2 ← 0
21: if legalP lace(s2, l2, s

′
2) then

22: nextList.add ← (i′, s′1, l
′
1, s

′
2, l

′
2)

23: Place cells on both rows
24: s′1 ← s1 + 1, l′1 ← 0, s′2 ← s2 + 1, l′2 ← 0
25: if legalP lace(s1, l1, s

′
1) and legalP lace(s2, l2, s

′
2) then

26: nextList.add ← (i′, s′1, l
′
1, s

′
2, l

′
2)

27: Place no new cells
28: s′1 ← s1, l′1 ← l1 + 1, s′2 ← s2, l′2 ← l2 + 1
29: nextList.add ← (i′, s′1, l

′
1, s

′
2, l

′
2)

30: Return nextList

Fig. 2. The case represented by D[i][1][4][2][2].

over all sites, and all cells. In Algorithm 2, procedure getNext
generates all legal (i′, s′1, l

′
1, s

′
2, l

′
2). From the current DP entry,

Lines 15-18 generate all legal (i′, s′1, l
′
1, s

′
2, l

′
2) when we place a

cell only on the first row; similarly, Lines 19-22, 23-26, and 27-
29 generate all legal (i′, s′1, l

′
1, s

′
2, l

′
2) when we place a cell only

on the second row, on both rows, or on no rows, respectively.

For dynamic programming optimization of more than two
rows, we can just add DP array dimensions [sk][lk] for each
added row. However, the added dimensions may grow the
total runtime and memory footprint beyond practical usage.
In this work, we use double-row dynamic programming for
optimization.

The size of the DP array for n rows is O(xmax(smax(2∗xΔ+
wmax))

n), where wmax is the maximum cell width and smax

is the maximum value for dimension sk. Experiments using
our implementation reveal runtimes that are more obviously
dependent on the number of getNext() function calls, as opposed
to the size of the DP array. Our experiments also show that the
number of getNext() function calls mainly depends on the num-
ber of cells in the optimization window and the displacement
range xΔ. This points to tuning of our DP implementation as
a necessary future improvement.
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C. Overall Flow

Figure 3 shows the overall optimization flow. Given a post-
P&R database, we first perform our dynamic programming-
based detailed placement optimization to maximize the poten-
tial number of power staples, and then perform incremental
routing and Vt swapping to fix routing and timing degradation
after our optimization. Next, we perform power staple insertion
to complete the PDN and perform a vectorless dynamic IR drop
analysis to show the results. We note that our optimization and
power staple insertion could also be performed in both post-
place and post-CTS stages. However, to compare the QoR with,
and without, our optimization using a single database, in this
work we only perform our optimization in the post-route stage,
as shown in Figure 3.

Fig. 3. Overall flow of our work. The red box indicates steps that we
implement. Commercial tools [12] [13] are used for all other steps.

IV. EXPERIMENTS

We implement our dynamic programming in C++ with
OpenAccess 2.2.43 [15] to support LEF/DEF [14]. We perform
experiments in a 7nm FinFET technology with multi-height
triple-Vt libraries from a leading technology consortium.2 We
apply our optimization to Arm Cortex-M0 and three design
blocks (AES, JPEG and MPEG) from OpenCores [16]. Design
information is summarized in Table II.3

In this section, we first investigate sensitivity and scalability
with respect to the displacement range. Second, we study effects
of weighting factors, i.e., displacement factor and benefit table.
Third, we propose a heuristic benefit table that is able to balance
VDD and VSS staples. Fourth, we show experimental results
across different design blocks and utilizations, with IR drop
analysis. Last, we compare three examples of metaheuristics
that can be implemented around our basic DP optimization. In
the following experiments, we use our double-row optimization
by default, and we show the comparison with single-row
optimization in Section IV-D.

TABLE II
DESIGN INFORMATION.

design #inst clkp
M0 ∼10K 500ps

AES ∼12K 500ps
MPEG ∼14K 500ps
JPEG ∼54K 500ps

2We use the process, voltage, and temperature conditions (TT, 0.65V, 25◦C)
for both place-and-route and IR-drop analysis. We build power mesh on M7
to M9 with 0.5μm width, 15.5μm pitch and 7μm offset, and M2 power rails.
We use M1 and V12 for power staples and M1 is not allowed for routing.

3We synthesize designs using Synopsys Design Compiler L-2016.03-
SP4 [18], and perform place-and-route using Cadence Innovus Implementation
System v16.2 [12]. We perform vectorless dynamic IR drop analysis using
Cadence Voltus IC power integrity solution [13]. Our dynamic programming-
based optimizations are performed in a single thread on a 2.6GHz Intel Xeon
server.

Fig. 4. (a) Sensitivity of #staples to displacement range xΔ, and (b) sensitivity
of runtime to displacement range (xΔ).

A. Scalability/Sensitivity Study
Since the displacement range (xΔ) determines the solution

space, and also the size of the DP table data structure, we
first study the sensitivity of #staples to the displacement range,
and the scalability of our algorithm when we increase the
displacement range. In this experiment, we sweep xΔ from 0
to 10 with a step of 1. To show the stability of our optimization
to block utilization, we use design block AES with four target
utilizations: 0.60, 0.65, 0.70 and 0.75. In this experiment, since
weighting factors do not affect the scalability, they have a
default value of 0. The benefit table simply shows the total
length of power staples that can be inserted.

Figure 4(a) shows the number of power staples vs. displace-
ment range. The x-axis is the displacement range, and the y-
axis is #staples. We can see that for values of displacement
range > 5, there are diminishing returns in terms of #staples.
Also, design blocks with a lower utilization tend to saturate with
larger #staples, as one would expect. These data motivate future
efforts to obtain a more detailed and accurate understanding
of the relationship between target utilization and maximum
IR drop, e.g., for use in early design exploration.4 Note that
the saturation of #staples versus displacement range depends
on the library used. The dotted lines in Figure 4(a) show the
(normalized) result when all widths are doubled (x-coordinates,
and cell widths and pin locations in each library cell). With the
wider cells, increasing the displacement range continues to give
staple insertion benefits up to larger values of xΔ.

Figure 4(b) shows the runtime vs. displacement range. The
run with xΔ = 9 consumes 4× runtime compared to the run
with xΔ = 5, but only results in minor increase in #staples.
Utilization generally does not affect the runtime, showing the
robustness of our optimization. Thus, to balance the solution
quality and runtime, we choose xΔ = 5 in all the following
experiment.

Another study examines whether there is any benefit to
breaking the optimization into multiple, more “gradual”,
phases. Table III shows how number of staples changes when
we run two rounds of optimizations with total displacement

4As our experiments show, there is less available increment in the number
of placed staples when the utilization is higher. Decreasing (resp. increasing)
utilization reduces current density while increasing (resp. decreasing) potential
staple insertion. I.e., there is a compounding of IR drop mitigation (resp.,
degradation) effects, which is further compounded by changes to gate sizing and
voltage-induced timing margins. Deriving a principled model of this dynamic
is an open challenge.
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Fig. 5. Sensitivities of (a) #staples, and (b) total cell displacement, to the
displacement factor (α).

TABLE III
TOTAL #STAPLES PLACED WHEN WE APPLY TWO ROUNDS OF

OPTIMIZATION WITH TOTAL DISPLACEMENT RANGE (xΔ) = 6. EACH ROW

REPRESENTS DESIGN AES WITH UTILIZATION BETWEEN 0.60 AND 0.75.

Util xΔ

6 1+5 2+4 3+3 4+2 5+1
0.60 36974 36857 36634 36493 36611 36748
0.65 32389 32240 32079 31936 32054 32199
0.70 28624 28540 28362 28252 28287 28432
0.75 25090 25939 24867 24722 24780 24915

range (xΔ) = 6. The outcome is worst when we perform
two phases of optimization, each with displacement range
(xΔ) = 3. The apparent takeaway is that it is better to consume
available displacement range “in one shot”.

B. Study of Weighting Factors

Our next experiment studies the impact of the displacement
factor (α). We sweep the displacement factor with value 0, and
from 10−3.5 to 10−0.5, with a multiplier of 100.5. We still use
the same design block AES with four different utilizations as in
Section IV-A. Figure 5(a) shows the #staples vs. displacement
factor and Figure 5(b) shows the total cell displacement vs.
displacement factor.

From Figure 5, with a non-zero weight, total displacement
decreases sharply while #staples does not change much. This
indicates that we can preserve most of #staples while reducing
total cell displacement by using a non-zero α. A smaller total
cell displacement is beneficial to minimize perturbation of the
input layout and thus we use α = 0.01 in all the following
experiments. Note that this choice is based on our experiments,
and that a different α may be preferred in a different technology
node or design enablement.

C. Study of Benefit Table

We now discuss our investigations into the benefit table.
First, we study the tradeoff between short and long staples,
i.e., whether we should encourage fewer but longer staples,
or more but shorter staples. Since our optimization changes
the placement, to make a fair comparison and investigate the
tradeoff, we use the AES design with pre-placed power staples
at fixed intervals (20CPP) and perform IR drop analysis.5 Each
run uses a different staple length, from 2 to 10 row heights,
with a step size of 2 row heights. We only use VDD power
staples in this study.

5CPP = contacted poly pitch. In this work, we use a technology enablement
where 1CPP = 42nm.

Fig. 6. Design examples with different lengths of power staples: (a) power
staple length = 2 row heights, and (b) power staple length = 10 row heights.

As shown in Figure 6, the total length of all power staples
is kept essentially constant across different configurations. We
also ensure that the initial input placement is identical across all
runs, with power staple tracks always free from pins, blockages
and pre-routes. As shown in Table IV, we can see that the IR
drop is not sensitive to the staple length.

TABLE IV
IR DROP VS. STAPLE LENGTH.

Staple length 2 4 6 8 10
Worst IR drop (mV ) 67.9 67.8 67.7 67.7 67.6

Now we propose our heuristic benefit table setting to improve
the balance between #VDD and VSS staples. Since the double-
row dynamic programming is performed every two rows in a
window, without overlapping (e.g., optimize 1st and 2nd rows,
then 3rd and 4th rows), the optimization is always aligned with
either VDD rails or with VSS rails, resulting in potentially
biased power staples (e.g., staples of one rail are systematically
more likely to occur than those of the other rail). To overcome
this issue, we propose a reconfiguration of the benefit table
so that a single-height staple gets a non-zero benefit (β), with
all other staple length getting a benefit of one (up to ten row
heights). Such single-height staples may get extended in the
next optimization window so that there is a chance to re-balance
VDD/VSS staples. We have experimentally swept β from 0 to
1.0, with a step size of 0.1, with results shown in Figure 7(a).
As β increases, VDD/VSS staples become balanced without
sacrificing the total #staples. We use β = 0.7 in all following
experiments.

D. Metaheuristics
In this subsection, we compare three strategies: (i) single-row

optimization (SR); (ii) double-row optimization with overlap
(Meta-1); and (iii) two-pass double-row optimization without
overlap (Meta-2). In (ii), we perform the double-row optimiza-
tion every two rows with one row overlapped (e.g., we optimize
row 1 and row 2, then row 2 and row 3, then row 3 and row
4, etc.). In (iii), the first pass starts at the odd rows, and then
the second pass starts at the even rows (e.g., we optimize row
1 and row 2, row 3 and row 4, etc. in the first pass, and row 2
and row 3, etc. in the second pass).

Therefore, effectively each row is covered once in SR, and
twice in Meta-1 and Meta-2. We show the experimental results
in Figure 7(b). Compared to Baseline, where there is no detailed
placement optimization, the methods SR, Meta-1 and Meta-2
respectively achieve 20.1%, 22.3% and 22.7% more inserted
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Fig. 7. (a) Number of staples (total, VDD and VSS) that can be placed, versus
balance factor (β) (AES with utilization 0.60). (b) Number of staples that
can be placed, versus utilization by different strategies (AES with utilization
between 0.60 and 0.75).

staples, averaged over all four target utilizations. Thus, we use
Meta-2 for our main experimental results (Subsection IV-E).6

E. Main Results

We execute our Meta-2 optimization using all design blocks
with the aforementioned parameter settings, and report #staples,
average and worst IR drop before and after optimization, along
with Δ worst negative slack (WNS) and runtime, at four
utilizations per design block. Table V shows both the initial
and post-optimization values of metrics (IR drop values are
in units of mV). Figure 8 shows vectorless dynamic IR drop
heatmaps for AES with 0.60 utilization.

We observe that our optimization can increase #staples by
anywhere from 6.2% to 24.6%, and reduce IR drop by up to
13.2%, compared to post-placement staple insertion without our
optimization. Furthermore, ΔWNS is similar before and after
optimization, showing the effectiveness and robustness of our
optimization. On the downside, IR drop can increase after our
optimization (e.g., the case of M0 with 0.65 utilization); this
is because the design’s current map changes with placement
perturbation and timing recovery steps, even as we add more
power staples. Hence, directions for improvement include better
control of the commercial P&R tool, and/or implementing our
own legalization and ECO capabilities. We also note that cur-
rent runtimes are long, reflecting unoptimized implementation
that pays heavily for getNext() function calls.

Fig. 8. Heatmaps of vectorless dynamic IR drop for AES.

6Note that there is generally no benefit from making multiple passes over
the rows of the layout, the same solution. Our ongoing efforts seek richer
combinations of metaheuristics to further improve results.

TABLE V
EXPERIMENTAL RESULTS USING DOUBLE-ROW OPTIMIZATION.

Design Util #Staples IR drop (mV,Avg) IR drop (mV,Worst) ΔWNS Runtime
Init Final (Δ%) Init Final (Δ%) Init Final (Δ%) (ns) (sec)

M0

60% 29109 33423 (+14.8%) 29 28 (-3.4%) 76 66 (-13.2%) -0.009 2666
65% 25295 29254 (+15.7%) 28 28 (0.0%) 58 60 (+3.4%) -0.016 2249.5
70% 22233 25628 (+15.3%) 29 29 (0.0%) 77 76 (-1.3%) -0.008 2450
75% 19700 22889 (+16.2%) 29 29 (0.0%) 80 80 (0.0%) -0.017 2058

AES

60% 31355 37813 (+20.6%) 23 23 (0.0%) 51 47 (-5.6%) -0.001 2542.5
65% 27165 33164 (+22.1%) 22 22 (0.0%) 54 51 (-5.6%) -0.001 2127
70% 23571 29129 (+23.6%) 22 22 (0.0%) 63 62 (-1.6%) -0.001 3142
75% 20496 25530 (+24.6%) 22 22 (0.0%) 71 68 (-4.2%) -0.006 2520

MPEG

60% 75781 80951 (+6.8%) 24 24 (0.0%) 64 60 (-6.3%) 0.000 3700
65% 67836 72685 (+7.1%) 24 24 (0.0%) 57 60 (+5.3%) 0.000 4088.5
70% 61152 65362 (+6.9%) 25 25 (0.0%) 62 59 (-4.8%) 0.000 4410
75% 55426 58928 (+6.3%) 30 30 (0.0%) 81 79 (-2.5%) -0.002 3709

JPEG

60% 217467 244333 (+12.4%) 28 27 (-3.6%) 88 84 (-4.5%) -0.001 16679
65% 193089 218483 (+13.2%) 26 27 (+3.8%) 79 76 (-3.8%) 0.000 13869.5
70% 171857 195781 (+13.9%) 28 28 (0.0%) 69 70 (+1.4%) -0.007 15069
75% 152805 174618 (+14.3%) 29 28 (-3.4%) 73 68 (-6.8%) 0.000 12563.5

V. CONCLUSIONS

We have presented novel DP-based single- and double-
row detailed placement optimizations with metaheuristics to
maximize power staple insertion in a post-placement flow. We
perform extensive studies on the scalability and sensitivity to
parameters, impact of the benefit table, as well as balance of
VDD/VSS staples. Compared to the traditional post-placement
flow, we achieve up to 13.2% (10mV ) reduction in IR drop,
with almost no WNS degradation compared to a pre-placement
flow. Our ongoing efforts include (i) better exploration of the
benefit table; (ii) understanding in greater detail the dynamics of
the relationship between power staples and IR drop; (iii) further
exploration of metaheuristics, (iv) runtime speedup techniques,
and (v) exploration of power mesh structures with different
width, pitch and offset.
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